
1

QPX Architecture

Quad Processing eXtension to the Power ISATM

May 9, 2012

Thomas Fox

foxy@us.ibm.com

QPX Architecture

2

Chapter 1. Quad-Vector Floating-Point Facility Overview

This document defines the Quad-Processing eXtension
(QPX) to IBM’s Power Instruction Set Architecture.
Refer to IBM’s Power ISATM AS architecture document
for descriptions of the base Power instruction set, the
storage model, and related facilities available to the
application programmer.

The computational model of the QPX architecture is a
vector Single Instruction Multiple Data (SIMD) model
with four execution slots and a register file containing
32 registers of 256 bits. Each of the 32 registers can be
envisioned as containing four elements of 64 bits,
whereby each of the execution slots operates on one
vector element.

1.1 Notation
The following notation is specific to and used through-
out the QPX Architecture document.
n QRT, QRA, QRB, and QRC refer to Quad Float-

ing-Point Registers, which are 256-bit vector regis-
ters containing four elements with 64 bits per
element. The vector elements are numbered
0,1,2,3, with element 0 comprising bits 0:63, ele-
ment 1 comprising bits 64:127, element 2 compris-
ing bits 128:191, and element 3 comprising bits
192:255.

n QRTx refers to element x of vector register QRT.

 QPX Architecture

3

Chapter 2. Quad-Vector Floating-Point Facility Registers

2.1 Quad-Vector Floating-Point
Registers
Implementations of this architecture provide 32
Quad-vector floating-Point Registers (QPRs), named
QPR0 through QPR31. The QPX instruction formats
provide 5-bit fields for specifying the QPRs to be used
in the execution of the instruction.

Scalar floating-point computational instructions,
defined in the Power ISA, operate on element 0 QPRs,
which serve as both the scalar FPRs for scalar instruc-
tions and the element 0 QPRs for vector instructions.

The figure below shows the Quad floating-point regis-
ters.

Figure 1. Quad Floating-Point Registers

2.2 Floating-Point Status and
Control Register
The Floating-Point Exception Summary bits (32:34)
and the Floating-Point Exception bits (35:44 and 53:55)
of the FPSCR are never updated by QPX instructions,
neither implicitly nor explicitly. The remaining status bits
(45:51) are never updated by QPX instructions.

The Floating-Point Exception Enable bits (56:60) are
ignored by all QPX instructions, which execute as if
these bits were disabled. The Floating-Point Non-IEEE
Mode (NI) bit (61) and the Floating-Point Rounding
Control (RN) bits (62:63) of the FPSCR affect the oper-
ations on all four vector elements for QPX instructions.

QPR00 QPR01 QPR02 QPR03

QPR10 QPR11 QPR12 QPR13

. . .

. . .

QPR300 QPR301 QPR302 QPR303

QPR310 QPR311 QPR312 QPR313

0 63 64 127 128 191 192 255

QPX Architecture

4

2.3 Store Exception Enable Registers
Certain QPX store instructions provide a novel mecha-
nism for the detection and indication of numerically
exceptional conditions at the store interface.

A Store Indicate NaN Exception occurs when the
source operand of a Store with Indicate instruction con-
tains a NaN value. The Store Nan Exception Enable
(SNEE) register enables the indication of such an
exception. If an enabled Store Indicate NaN Exception
occurs, the Auxiliary Processor bit of the Exception
Syndrome Register is set (ESR[AP] = ‘1’).

A Store Indicate Infinity Exception occurs when the
source operand contains an Infinity value during a
Store with Indicate instruction. The Store Infinity
Exception Enable (SIEE) register enables the indica-
tion of such an exception. If an enabled Store Indicate
Infinity Exception occurs, the Auxiliary Processor bit of
the Exception Syndrome Register is set (ESR[AP] =
‘1’).

The precedence of simultaneously occurring indication
exceptions and memory fault exceptions is implemen-
tation defined.

In the QPU for BGQ, the following bits in the
AXUCR0 Special Purpose Register contain the
SNEE and SIEE state on a per thread basis:

axucr0(20) : Thread 0 SNEE
axucr0(21) : Thread 0 SIEE
axucr0(22) : Thread 1 SNEE
axucr0(23) : Thread 1 SIEE
axucr0(24) : Thread 2 SNEE
axucr0(25) : Thread 2 SIEE
axucr0(26) : Thread 3 SNEE
axucr0(27) : Thread 3 SIEE

Implementation Note

 QPX Architecture

5

Chapter 3. Scalar Instructions

Scalar floating-point load instructions, defined in the
Power ISA, cause a replication of the source data
across all elements of the target register.

Scalar floating-point move, arithmetic, rounding and
conversion, compare, and select instructions, defined
in the Power ISA, are executed in execution slot 0.
Source operands for these instructions are read from
element 0 QPRs, while target results are written to ele-
ment 0 QPRs. Target elements 1, 2, and 3 are left in an
undefined state.

QPX Architecture

6

Chapter 4. Quad-Vector Floating-Point Facility Instructions

4.1 Quad-Vector Floating-Point Load Instructions

Quad-Vector Load Floating-point Single
indeXed X-form

qvlfsx QRT,RA,RB (X=0)
qvlfsxa QRT,RA,RB (X=1)

if RA = 0 then b ← 0
else b ← (RA)
EA ← (b + (RB)) & 0xFFFFFFFFFFFFFFF0
MVAL ← MEM(EA, 16)
QRT0 ← DOUBLE(MVAL0:31)
QRT1 ← DOUBLE(MVAL32:63)
QRT2 ← DOUBLE(MVAL64:95)
QRT3 ← DOUBLE(MVAL96:127)

Let the effective address (EA) be the sum (RA|0)+(RB).

The 16 bytes in storage addressed by the
16-byte-aligned EA are interpreted as four single-preci-
sion vector elements, converted to double-precision for-
mat, and placed into register QRT.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
None

Quad-Vector Load Floating-point Single
with Update indeXed X-form

qvlfsux QRT,RA,RB (X=0)
qvlfsuxa QRT,RA,RB (X=1)

EA ← ((RA) + (RB)) & 0xFFFFFFFFFFFFFFF0
MVAL ← MEM(EA, 16)
QRT0 ← DOUBLE(MVAL0:31)
QRT1 ← DOUBLE(MVAL32:63)
QRT2 ← DOUBLE(MVAL64:95)
QRT3 ← DOUBLE(MVAL96:127)
RA ← EA

Let the effective address (EA) be the sum (RA)+(RB).

The 16 bytes in storage addressed by the
16-byte-aligned EA are interpreted as four single-preci-
sion vector elements, converted to double-precision for-
mat, and placed into register QRT.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
None

31 QRT RA RB 519 X
0 6 11 16 21 31

31 QRT RA RB 551 X
0 6 11 16 21 31

 QPX Architecture

7

Quad-Vector Load Floating-point Double
indeXed X-form

qvlfdx QRT,RA,RB (X=0)
qvlfdxa QRT,RA,RB (X=1)

if RA = 0 then b ← 0
else b ← (RA)
EA ← (b + (RB)) & 0xFFFFFFFFFFFFFFE0
QRT ← MEM(EA, 32)

Let the effective address (EA) be the sum (RA|0)+(RB).

The 32 bytes in storage addressed by the
32-byte-aligned EA are interpreted as four double-pre-
cision vector elements, and placed into register QRT.

If the X bit is set, and the address is not aligned on a
32-byte boundary, an exception is raised.

Special Registers Altered:
None

Quad-Vector Load Floating-point Double
with Update indeXed X-form

qvlfdux QRT,RA,RB (X=0)
qvlfduxa QRT,RA,RB (X=1)

EA ← ((RA) + (RB)) & 0xFFFFFFFFFFFFFFE0
QRT ← MEM(EA, 32)
RA ← EA

Let the effective address (EA) be the sum (RA)+(RB).

The 32 bytes in storage addressed by the
32-byte-aligned EA are interpreted as four double-pre-
cision vector elements, and placed into register QRT.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

If the X bit is set, and the address is not aligned on a
32-byte boundary, an exception is raised.

Special Registers Altered:
None

31 QRT RA RB 583 X
0 6 11 16 21 31

31 QRT RA RB 615 X
0 6 11 16 21 31

QPX Architecture

8

Quad-Vector Load Floating-point
Complex Single indeXed X-form

qvlfcsx QRT,RA,RB (X=0)
qvlfcsxa QRT,RA,RB (X=1)

if RA = 0 then b ← 0
else b ← (RA)
EA ← (b + (RB)) & 0xFFFFFFFFFFFFFFF8
MVAL ← MEM(EA, 8)
QRT0 ← DOUBLE(MVAL0:31)
QRT1 ← DOUBLE(MVAL32:63)
QRT2 ← DOUBLE(MVAL0:31)
QRT3 ← DOUBLE(MVAL32:63)

Let the effective address (EA) be the sum (RA|0)+(RB).

The 8 bytes in storage addressed by the 8-byte-aligned
EA are interpreted as two single-precision vector ele-
ments, converted to double-precision format, and repli-
cated into register QRT.

If the X bit is set, and the address is not aligned on an
8-byte boundary, an exception is raised.

Special Registers Altered:
None

Quad-Vector Load Floating-point
Complex Double indeXed X-form

qvlfcdx QRT,RA,RB (X=0)
qvlfcdxa QRT,RA,RB (X=1)

if RA = 0 then b ← 0
else b ← (RA)
EA ← (b + (RB)) & 0xFFFFFFFFFFFFFFF0
MVAL ← MEM(EA, 16)
QRT0 ← MVAL0

QRT1 ← MVAL1

QRT2 ← MVAL0

QRT3 ← MVAL1

Let the effective address (EA) be the sum (RA|0)+(RB).

The 16 bytes in storage addressed by the
16-byte-aligned EA are interpreted as two double-pre-
cision vector elements, and replicated into register
QRT.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
None

31 QRT RA RB 7 X
0 6 11 16 21 31

31 QRT RA RB 71 X
0 6 11 16 21 31

 QPX Architecture

9

Quad-Vector Load Floating-point
Complex Single with Update indeXed
X-form

qvlfcsux QRT,RA,RB (X=0)
qvlfcsuxa QRT,RA,RB (X=1)

EA ← ((RA) + (RB)) & 0xFFFFFFFFFFFFFFF8
MVAL ← MEM(EA, 8)
QRT0 ← DOUBLE(MVAL0:31)
QRT1 ← DOUBLE(MVAL32:63)
QRT2 ← DOUBLE(MVAL0:31)
QRT3 ← DOUBLE(MVAL32:63)
RA ← EA

Let the effective address (EA) be the sum (RA)+(RB).

The 8 bytes in storage addressed by the 8-byte-aligned
EA are interpreted as two single-precision vector ele-
ments, converted to double-precision format, and repli-
cated into register QRT.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

If the X bit is set, and the address is not aligned on a
8-byte boundary, an exception is raised.

Special Registers Altered:
None

Quad-Vector Load Floating-point
Complex Double with Update indeXed
X-form

qvlfcdux QRT,RA,RB (X=0)
qvlfcduxa QRT,RA,RB (X=1)

EA ← ((RA) + (RB)) & 0xFFFFFFFFFFFFFFF0
MVAL ← MEM(EA, 16)
QRT0 ← MVAL0

QRT1 ← MVAL1

QRT2 ← MVAL0

QRT3 ← MVAL1

RA ← EA

Let the effective address (EA) be the sum (RA)+(RB).

The 16 bytes in storage addressed by the
16-byte-aligned EA are interpreted as two double-pre-
cision vector elements, and replicated into register
QRT.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
None

31 QRT RA RB 39 X
0 6 11 16 21 31

31 QRT RA RB 103 X
0 6 11 16 21 31

QPX Architecture

10

Quad-Vector Load Floating-point as
Integer Word Algebraic indeXed X-form

qvlfiwax QRT,RA,RB (X=0)
qvlfiwaxa QRT,RA,RB (X=1)

if RA = 0 then b ← 0
else b ← (RA)
EA ← (b + (RB)) & 0xFFFFFFFFFFFFFFF0
M ← MEM(EA, 16)
QRT0 ← 32(M0) || M0:31
QRT1 ← 32(M32) || M32:63
QRT2 ← 32(M64) || M64:95
QRT3 ← 32(M96) || M96:127

Let the effective address (EA) be the sum (RA|0)+(RB).

The 16 bytes in storage addressed by the
16-byte-aligned EA are interpreted as 32-bit integers,
sign extended to 64-bit integers, and placed into regis-
ter QRT.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
None

Quad-Vector Load Floating-point as
Integer Word and Zero indeXed X-form

qvlfiwzx QRT,RA,RB (X=0)
qvlfiwzxa QRT,RA,RB (X=1)

if RA = 0 then b ← 0
else b ← (RA)
EA ← (b + (RB)) & 0xFFFFFFFFFFFFFFF0
M ← MEM(EA, 16)
QRT0 ← 320 || M0:31
QRT1 ← 320 || M32:63
QRT2 ← 320 || M64:95
QRT3 ← 320 || M96:127

Let the effective address (EA) be the sum (RA|0)+(RB).

The 16 bytes in storage addressed by the
16-byte-aligned EA are interpreted as 32-bit integers,
zero extended to 64-bit integers, and placed into regis-
ter QRT.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
None

31 QRT RA RB 871 X
0 6 11 16 21 31

31 QRT RA RB 839 X
0 6 11 16 21 31

 QPX Architecture

11

Quad-Vector Load Permute Control Left
Double indeXed X-form

qvlpcldx QRT,RA,RB

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + (RB)
AA = EA & 0b11000
QRT0 ← 0x400 || (AA)58:60 ||

490
QRT1 ← 0x400 || (AA+ 8)58:60 ||

490
QRT2 ← 0x400 || (AA+16)58:60 ||

490
QRT3 ← 0x400 || (AA+24)58:60 ||

490

Let the effective address (EA) be the sum (RA|0)+(RB).

A quad-vector (32 bytes) describing a dynamic dou-
ble-precision data alignment to be performed using the
quad-vector permute instruction qvfperm is generated
based on the address EA.

The instruction may raise a memory translation excep-
tion if EA is not a valid address.

The behavior of this instruction is boundedly undefined
when the address does not correspond to at least the
natural alignment of an IEEE double precision floating
point number.

Special Registers Altered:
None

Quad-Vector Load Permute Control Left
Single indeXed X-form

qvlpclsx QRT,RA,RB

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + (RB)
AA = (EA * 2) & 0b11000
QRT0 ← 0x400 || (AA)58:60 ||

490
QRT1 ← 0x400 || (AA+ 8)58:60 ||

490
QRT2 ← 0x400 || (AA+16)58:60 ||

490
QRT3 ← 0x400 || (AA+24)58:60 ||

490

Let the effective address (EA) be the sum (RA|0)+(RB).

A quad-vector (32 bytes) describing a dynamic sin-
gle-precision data alignment to be performed using the
quad-vector permute instruction qvfperm is generated
based on the address EA.

The instruction may raise a memory translation excep-
tion if EA is not a valid address.

The behavior of this instruction is boundedly undefined
when the address does not correspond to at least the
natural alignment of an IEEE double precision floating
point number.

Special Registers Altered:
None

31 QRT RA RB 582 /
0 6 11 16 21 31

This instruction allows the implementation of a soft-
ware based alignment sequence for double-preci-
sion floating-point quad-vectors
qvlpcldx qalign, ra, rb
qvlfdux qmem1, ra, rb
qvlfdux qmem2, ra, rb
qvfperm qaligned, qmem1, qmem2, qalign

Programming Note

31 QRT RA RB 518 /
0 6 11 16 21 31

This instruction allows the implementation of a soft-
ware based alignment sequence for single-preci-
sion floating-point quad-vectors
qvlpclsx qalign, ra, rb
qvlfsux qmem1, ra, rb
qvlfsux qmem2, ra, rb
qvfperm qaligned, qmem1, qmem2, qalign

Programming Note

QPX Architecture

12

Quad-Vector Load Permute Control Right
Double indeXed X-form

qvlpcrdx QRT,RA,RB

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + (RB)
AA = (32 - (EA & 0b11000))
QRT0 ← 0x400 || (AA)58:60 ||

490
QRT1 ← 0x400 || (AA+ 8)58:60 ||

490
QRT2 ← 0x400 || (AA+16)58:60 ||

490
QRT3 ← 0x400 || (AA+24)58:60 ||

490

Let the effective address (EA) be the sum (RA|0)+(RB).

A quad-vector (32 bytes) describing a dynamic data
alignment to be performed using the quad-vector per-
mute instruction qvfperm is generated based on the
address EA.

The instruction may raise a memory translation excep-
tion if EA is not a valid address.

The behavior of this instruction is boundedly undefined
when the address does not correspond to at least the
natural alignment of an IEEE double precision floating
point number.

Special Registers Altered:
None

Quad-Vector Load Permute Control Right
Single indeXed X-form

qvlpcrsx QRT,RA,RB

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + (RB)
AA = (32 - ((EA * 2) & 0b11000))
QRT0 ← 0x400 || (AA)58:60 ||

490
QRT1 ← 0x400 || (AA+ 8)58:60 ||

490
QRT2 ← 0x400 || (AA+16)58:60 ||

490
QRT3 ← 0x400 || (AA+24)58:60 ||

490

Let the effective address (EA) be the sum (RA|0)+(RB).

A quad-vector (32 bytes) describing a dynamic data
alignment to be performed using the quad-vector per-
mute instruction qvfperm is generated based on the
address EA.

The instruction may raise a memory translation excep-
tion if EA is not a valid address.

The behavior of this instruction is boundedly undefined
when the address does not correspond to at least the
natural alignment of an IEEE double precision floating
point number.

Special Registers Altered:
None

31 QRT RA RB 70 /
0 6 11 16 21 31

This instruction allows the implementation of a soft-
ware based alignment sequence for double-preci-
sion floating-point quad-vectors.

Programming Note

31 QRT RA RB 6 /
0 6 11 16 21 31

This instruction allows the implementation of a soft-
ware based alignment sequence for single-preci-
sion floating-point quad-vectors.

Programming Note

 QPX Architecture

13

4.2 Quad-Vector Floating-Point Store Instructions

Quad-Vector STore Floating-point Single
indeXed X-form

qvstfsx QRS,RA,RB (X=0)
qvstfsxa QRS,RA,RB (X=1)

if RA = 0 then b ← 0
else b ← (RA)
EA ← (b + (RB)) & 0xFFFFFFFFFFFFFFF0
MEM(EA, 16) ←SINGLE(QRS0) || SINGLE(QRS1) ||

SINGLE(QRS2) || SINGLE(QRS3)

Let the effective address (EA) be the sum (RA|0)+(RB).

The four vector elements of register QRS are converted
to single-precision format and stored into the 16 bytes
in storage addressed by the 16-byte-aligned EA.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
None

Quad-Vector STore Floating-point Single
with Update indeXed X-form

qvstfsux QRS,RA,RB (X=0)
qvstfsuxa QRS,RA,RB (X=1)

EA ← ((RA) + (RB)) & 0xFFFFFFFFFFFFFFF0
MEM(EA, 16) ←SINGLE(QRS0) || SINGLE(QRS1) ||

SINGLE(QRS2) || SINGLE(QRS3)
RA ← EA

Let the effective address (EA) be the sum (RA)+(RB).

The four vector elements of register QRS are converted
to single-precision format and stored into the 16 bytes
in storage addressed by the 16-byte-aligned EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
None

31 QRS RA RB 647 X
0 6 11 16 21 31

31 QRS RA RB 679 X
0 6 11 16 21 31

QPX Architecture

14

Quad-Vector STore Floating-point Single
indeXed and Indicate X-form

qvstfsxi QRS,RA,RB (X=0)
qvstfsxia QRS,RA,RB (X=1)

if RA = 0 then b ← 0
else b ← (RA)
EA ← (b + (RB)) & 0xFFFFFFFFFFFFFFF0
MEM(EA, 16) ← SINGLE(QRS0) || SINGLE(QRS1) ||

SINGLE(QRS2) || SINGLE(QRS3)

if (SNEE = 1) then
if (isNaN (QRS0) OR

isNaN (QRS1) OR
isNaN (QRS2) OR
isNaN (QRS3)) then

ESR[AP] ← 1

if (SIEE = 1) then
if (isInf (QRS0) OR

isInf (QRS1) OR
isInf (QRS2) OR
isInf (QRS3)) then

ESR[AP] ← 1

Let the effective address (EA) be the sum (RA|0)+(RB).

The four vector elements of register QRS are converted
to single-precision format and stored into the 16 bytes
in storage addressed by the 16-byte-aligned EA.

If any vector element being stored is a NaN (or Infinity),
and the corresponding Store NaN (or Infinity) Excep-
tion is enabled, then the Auxiliary Processor bit of the
Exception Syndrome Register (ESR[AP]) is set.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
ESR[AP]

Quad-Vector STore Floating-point Single
with Update indeXed and Indicate X-form

qvstfsuxi QRS,RA,RB (X=0)
qvstfsuxia QRS,RA,RB (X=1)

EA ← ((RA) + (RB)) & 0xFFFFFFFFFFFFFFF0
MEM(EA, 16) ← SINGLE(QRS0) || SINGLE(QRS1) ||

SINGLE(QRS2) || SINGLE(QRS3)
RA ← EA

if (SNEE = 1) then
if (isNaN (QRS0) OR

isNaN (QRS1) OR
isNaN (QRS2) OR
isNaN (QRS3)) then

ESR[AP] ← 1

if (SIEE = 1) then
if (isInf (QRS0) OR

isInf (QRS1) OR
isInf (QRS2) OR
isInf (QRS3)) then

ESR[AP] ← 1

Let the effective address (EA) be the sum (RA)+(RB).

The four vector elements of register QRS are converted
to single-precision format and stored into the 16 bytes
in storage addressed by the 16-byte-aligned EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

If any vector element being stored is a NaN (or Infinity),
and the corresponding Store NaN (or Infinity) Excep-
tion is enabled, then the Auxiliary Processor bit of the
Exception Syndrome Register (ESR[AP]) is set.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
ESR[AP]

31 QRS RA RB 645 X
0 6 11 16 21 31

31 QRS RA RB 677 X
0 6 11 16 21 31

 QPX Architecture

15

Quad-Vector STore Floating-point Double
indeXed X-form

qvstfdx QRS,RA,RB (X=0)
qvstfdxa QRS,RA,RB (X=1)

if RA = 0 then b ← 0
else b ← (RA)
EA ← (b + (RB)) & 0xFFFFFFFFFFFFFFE0
MEM(EA, 32) ← (QRS)

Let the effective address (EA) be the sum (RA|0)+(RB).

The contents of register QRS are stored into the 32
bytes in storage addressed by the 32-byte-aligned EA.

If the X bit is set, and the address is not aligned on a
32-byte boundary, an exception is raised.

Special Registers Altered:
None

Quad-Vector STore Floating-point Double
with Update indeXed X-form

qvstfdux QRS,RA,RB (X=0)
qvstfduxa QRS,RA,RB (X=1)

EA ← ((RA) + (RB)) & 0xFFFFFFFFFFFFFFE0
MEM(EA, 32) ← (QRS)
RA ← EA

Let the effective address (EA) be the sum (RA)+(RB).

The contents of register QRS are stored into the 32
bytes in storage addressed by the 32-byte-aligned EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

If the X bit is set, and the address is not aligned on a
32-byte boundary, an exception is raised.

Special Registers Altered:
None

31 QRS RA RB 711 X
0 6 11 16 21 31

31 QRS RA RB 743 X
0 6 11 16 21 31

QPX Architecture

16

Quad-Vector STore Floating-point Double
indeXed and Indicate X-form

qvstfdxi QRS,RA,RB (X=0)
qvstfdxia QRS,RA,RB (X=1)

if RA = 0 then b ← 0
else b ← (RA)
EA ← (b + (RB)) & 0xFFFFFFFFFFFFFFE0
MEM(EA, 32) ← (QRS)

if (SNEE = 1) then
if (isNaN (QRS0) OR

isNaN (QRS1) OR
isNaN (QRS2) OR
isNaN (QRS3)) then

ESR[AP] ← 1

if (SIEE = 1) then
if (isInf (QRS0) OR

isInf (QRS1) OR
isInf (QRS2) OR
isInf (QRS3)) then

ESR[AP] ← 1

Let the effective address (EA) be the sum (RA|0)+(RB).

The contents of register QRS are stored into the 32
bytes in storage addressed by the 32-byte-aligned EA.

If any vector element being stored is a NaN (or Infinity),
and the corresponding Store NaN (or Infinity) Excep-
tion is enabled, then the Auxiliary Processor bit of the
Exception Syndrome Register (ESR[AP]) is set.

If the X bit is set, and the address is not aligned on a
32-byte boundary, an exception is raised.

Special Registers Altered:
ESR[AP]

Quad-Vector STore Floating-point Double
with Update indeXed and Indicate X-form

qvstfduxi QRS,RA,RB (X=0)
qvstfduxia QRS,RA,RB (X=1)

EA ← ((RA) + (RB)) & 0xFFFFFFFFFFFFFFE0
MEM(EA, 32) ← (QRS)
RA ← EA

if (SNEE = 1) then
if (isNaN (QRS0) OR

isNaN (QRS1) OR
isNaN (QRS2) OR
isNaN (QRS3)) then

ESR[AP] ← 1

if (SIEE = 1) then
if (isInf (QRS0) OR

isInf (QRS1) OR
isInf (QRS2) OR
isInf (QRS3)) then

ESR[AP] ← 1

Let the effective address (EA) be the sum (RA)+(RB).

The contents of register QRS are stored into the 32
bytes in storage addressed by the 32-byte-aligned EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

If any vector element being stored is a NaN (or Infinity),
and the corresponding Store NaN (or Infinity) Excep-
tion is enabled, then the Auxiliary Processor bit of the
Exception Syndrome Register (ESR[AP]) is set.

If the X bit is set, and the address is not aligned on a
32-byte boundary, an exception is raised.

Special Registers Altered:
ESR[AP]

31 QRS RA RB 709 X
0 6 11 16 21 31

31 QRS RA RB 741 X
0 6 11 16 21 31

 QPX Architecture

17

Quad-Vector STore Floating-point
Complex Single indeXed X-form

qvstfcsx QRS,RA,RB (X=0)
qvstfcsxa QRS,RA,RB (X=1)

if RA = 0 then b ← 0
else b ← (RA)
EA ← (b + (RB)) & 0xFFFFFFFFFFFFFFF8
MEM(EA, 8) ← SINGLE(QRS0) || SINGLE(QRS1)

Let the effective address (EA) be the sum (RA|0)+(RB).

Vector elements 0 and 1 of register QRS are converted
to single-precision format and stored into the 8 bytes in
storage addressed by the 8-byte-aligned EA.

If the X bit is set, and the address is not aligned on an
8-byte boundary, an exception is raised.

Special Registers Altered:
None

Quad-Vector STore Floating-point
Complex Double indeXed X-form

qvstfcdx QRS,RA,RB (X=0)
qvstfcdxa QRS,RA,RB (X=1)

if RA = 0 then b ← 0
else b ← (RA)
EA ← (b + (RB)) & 0xFFFFFFFFFFFFFFF0
MEM(EA, 16) ← QRS0 || QRS1

Let the effective address (EA) be the sum (RA|0)+(RB).

Vector elements 0 and 1 of register QRS are stored into
the 16 bytes in storage addressed by the
16-byte-aligned EA.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
None

31 QRS RA RB 135 X
0 6 11 16 21 31

31 QRS RA RB 199 X
0 6 11 16 21 31

QPX Architecture

18

Quad-Vector STore Floating-point
Complex Single indeXed and Indicate
X-form

qvstfcsxi QRS,RA,RB (X=0)
qvstfcsxia QRS,RA,RB (X=1)

if RA = 0 then b ← 0
else b ← (RA)
EA ← (b + (RB)) & 0xFFFFFFFFFFFFFFF8
MEM(EA, 8) ← SINGLE(QRS0) || SINGLE(QRS1)

if (SNEE = 1) then
if (isNaN (QRS0) OR

isNaN (QRS1)) then
ESR[AP] ← 1

if (SIEE = 1) then
if (isInf (QRS0) OR

isInf (QRS1)) then
ESR[AP] ← 1

Let the effective address (EA) be the sum (RA|0)+(RB).

Vector elements 0 and 1 of register QRS are converted
to single-precision format and stored into the 8 bytes in
storage addressed by the 8-byte-aligned EA.

If any vector element being stored is a NaN (or Infinity),
and the corresponding Store NaN (or Infinity) Excep-
tion is enabled, then the Auxiliary Processor bit of the
Exception Syndrome Register (ESR[AP]) is set.

If the X bit is set, and the address is not aligned on an
8-byte boundary, an exception is raised.

Special Registers Altered:
ESR[AP]

Quad-Vector STore Floating-point
Complex Double indeXed and Indicate
X-form

qvstfcdxi QRS,RA,RB (X=0)
qvstfcdxia QRS,RA,RB (X=1)

if RA = 0 then b ← 0
else b ← (RA)
EA ← (b + (RB)) & 0xFFFFFFFFFFFFFFF0
MEM(EA, 16) ← QRS0 || QRS1

if (SNEE = 1) then
if (isNaN (QRS0) OR

isNaN (QRS1)) then
ESR[AP] ← 1

if (SIEE = 1) then
if (isInf (QRS0) OR

isInf (QRS1)) then
ESR[AP] ← 1

Let the effective address (EA) be the sum (RA|0)+(RB).

Vector elements 0 and 1 of register QRS are stored into
the 16 bytes in storage addressed by the
16-byte-aligned EA.

If any vector element being stored is a NaN (or Infinity),
and the corresponding Store NaN (or Infinity) Excep-
tion is enabled, then the Auxiliary Processor bit of the
Exception Syndrome Register (ESR[AP]) is set.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
ESR[AP]

31 QRS RA RB 133 X
0 6 11 16 21 31

31 QRS RA RB 197 X
0 6 11 16 21 31

 QPX Architecture

19

Quad-Vector STore Floating-point
Complex Single with Update indeXed
X-form

qvstfcsux QRS,RA,RB (X=0)
qvstfcsuxa QRS,RA,RB (X=1)

EA ← ((RA) + (RB)) & 0xFFFFFFFFFFFFFFF8
MEM(EA, 8) ← SINGLE(QRS0) || SINGLE(QRS1)
RA ← EA

Let the effective address (EA) be the sum (RA)+(RB).

Vector elements 0 and 1 of register QRS are converted
to single-precision format and stored into the 8 bytes in
storage addressed by the 8-byte-aligned EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

If the X bit is set, and the address is not aligned on an
8-byte boundary, an exception is raised.

Special Registers Altered:
None

Quad-Vector STore Floating-point
Complex Double with Update indeXed
X-form

qvstfcdux QRS,RA,RB (X=0)
qvstfcduxa QRS,RA,RB (X=1)

EA ← ((RA) + (RB)) & 0xFFFFFFFFFFFFFFF0
MEM(EA, 16) ← QRS0 || QRS1

RA ← EA

Let the effective address (EA) be the sum (RA)+(RB).

Vector elements 0 and 1 of register QRS are stored into
the 16 bytes in storage addressed by the
16-byte-aligned EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
None

31 QRS RA RB 167 X
0 6 11 16 21 31

31 QRS RA RB 231 X
0 6 11 16 21 31

QPX Architecture

20

Quad-Vector STore Floating-point
Complex Single with Update indeXed and
Indicate X-form

qvstfcsuxi QRS,RA,RB (X=0)
qvstfcsuxia QRS,RA,RB (X=1)

EA ← ((RA) + (RB)) & 0xFFFFFFFFFFFFFFF8
MEM(EA, 8) ← SINGLE(QRS0) || SINGLE(QRS1)
RA ← EA

if (SNEE = 1) then
if (isNaN (QRS0) OR

isNaN (QRS1)) then
ESR[AP] ← 1

if (SIEE = 1) then
if (isInf (QRS0) OR

isInf (QRS1)) then
ESR[AP] ← 1

Let the effective address (EA) be the sum (RA)+(RB).

Vector elements 0 and 1 of register QRS are converted
to single-precision format and stored into the 8 bytes in
storage addressed by the 8-byte-aligned EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

If any vector element being stored is a NaN (or Infinity),
and the corresponding Store NaN (or Infinity) Excep-
tion is enabled, then the Auxiliary Processor bit of the
Exception Syndrome Register (ESR[AP]) is set.

If the X bit is set, and the address is not aligned on an
8-byte boundary, an exception is raised.

Special Registers Altered:
ESR[AP]

Quad-Vector STore Floating-point
Complex Double with Update indeXed and
Indicate X-form

qvstfcduxi QRS,RA,RB (X=0)
qvstfcduxia QRS,RA,RB (X=1)

EA ← ((RA) + (RB)) & 0xFFFFFFFFFFFFFFF0
MEM(EA, 16) ← QRS0 || QRS1

RA ← EA

if (SNEE = 1) then
if (isNaN (QRS0) OR

isNaN (QRS1)) then
ESR[AP] ← 1

if (SIEE = 1) then
if (isInf (QRS0) OR

isInf (QRS1)) then
ESR[AP] ← 1

Let the effective address (EA) be the sum (RA)+(RB).

Vector elements 0 and 1 of register QRS are stored into
the 16 bytes in storage addressed by the
16-byte-aligned EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

If any vector element being stored is a NaN (or Infinity),
and the corresponding Store NaN (or Infinity) Excep-
tion is enabled, then the Auxiliary Processor bit of the
Exception Syndrome Register (ESR[AP]) is set.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
ESR[AP]

31 QRS RA RB 165 X
0 6 11 16 21 31

31 QRS RA RB 229 X
0 6 11 16 21 31

 QPX Architecture

21

Quad-Vector STore Floating-point as
Integer Word indeXed X-form

qvstfiwx QRS,RA,RB (X=0)
qvstfiwxa QRS,RA,RB (X=1)

if RA = 0 then b ← 0
else b ← (RA)
EA ← (b + (RB)) & 0xFFFFFFFFFFFFFFF0
MEM(EA, 16) ← QRS032:63 || QRS

1
32:63 ||

QRS232:63 || QRS
3
32:63

Let the effective address (EA) be the sum (RA|0)+(RB).

The least significant 32 bits of each vector element of
register QRS are stored into the 16 bytes in storage
addressed by the 16-byte-aligned EA.

If the contents of register QRS were produced, either
directly or indirectly, by a Load Floating-Point Single
instruction, a single-precision Arithmetic instruction, or
frsp, then the value stored is undefined. (The contents
of register QRS are produced directly by such an
instruction if QRS is the target register for the instruc-
tion. The contents of register QRS are produced indi-
rectly by such an instruction if QRS is the final target
register of a sequence of one or more Floating-Point
Move instructions, with the input to the sequence hav-
ing been produced directly by such an instruction.)

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
None

31 QRS RA RB 967 X
0 6 11 16 21 31

QPX Architecture

22

4.3 Quad-Vector Floating-Point Move Instructions

Quad-Vector Floating-point Move Register
X-form

qvfmr QRT,QRB

For each vector element, the contents of register QRB
are placed into register QRT.

Special Registers Altered:
None

Quad-Vector Floating-point NEGate
X-form

qvfneg QRT,QRB

For each vector element, the contents of register QRB,
with bit 0 inverted, are placed into register QRT.

Special Registers Altered:
None

Quad-Vector Floating-point ABSolute
value X-form

qvfabs QRT,QRB

For each vector element, the contents of register QRB,
with bit 0 set to zero, are placed into register QRT.

Special Registers Altered:
None

Quad-Vector Floating-point Negative
ABSolute value X-form

qvfnabs QRT,QRB

For each vector element, the contents of register QRB,
with bit 0 set to one, are placed into register QRT.

Special Registers Altered:
None

Quad-Vector Floating-point CoPy SiGN
X-form

qvfcpsgn QRT,QRA,QRB

QRT0 ← QRA0
QRT1:63 ← QRB1:63
QRT64 ← QRA64
QRT65:127 ← QRB65:127
QRT128 ← QRA128
QRT129:191 ← QRB129:191
QRT192 ← QRA192
QRT193:255 ← QRB193:255

For each vector element, the contents of register QRB,
with bit 0 set to the value of bit 0 of register QRA, are
placed into register QRT.

Special Registers Altered:
None

4 QRT /// QRB 72 /
0 6 11 16 21 31

4 QRT /// QRB 40 /
0 6 11 16 21 31

4 QRT /// QRB 264 /
0 6 11 16 21 31

4 QRT /// QRB 136 /
0 6 11 16 21 31

4 QRT QRA QRB 8 /
0 6 11 16 21 31

 QPX Architecture

23

4.4 Quad-Vector Floating-Point Arithmetic Instructions

4.4.1 Quad-Vector Floating-Point Elementary Arithmetic Instructions

 Quad-Vector Floating-point ADD [Single]
A-form

qvfadd QRT,QRA,QRB

qvfadds QRT,QRA,QRB

For each vector element, the floating-point operand in
register QRA is added to the floating-point operand in
register QRB.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR, and placed into register QRT.

Floating-point addition is based on exponent compari-
son and addition of the two significands. The exponents
of the two operands are compared, and the significand
accompanying the smaller exponent is shifted right,
with its exponent increased by one for each bit shifted,
until the two exponents are equal. The two significands
are then added or subtracted as appropriate, depend-
ing on the signs of the operands, to form an intermedi-
ate sum. All 53 bits of the significand as well as all
three guard bits (G, R, and X) enter into the computa-
tion.

If a carry occurs, the sum’s significand is shifted right
one bit position and the exponent is increased by one.

Special Registers Altered:
None

Quad-Vector Floating-point SUBtract
[Single] A-form

qvfsub QRT,QRA,QRB

qvfsubs QRT,QRA,QRB

For each vector element, the floating-point operand in
register QRB is subtracted from the floating-point oper-
and in register QRA.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR, and placed into register QRT.

The execution of the Floating Subtract instruction is
identical to that of Floating Add, except that the con-
tents of QRB participate in the operation with the sign
bit (bit 0) inverted.

Special Registers Altered:
None

4 QRT QRA QRB /// 21 /
0 6 11 16 21 26 31

0 QRT QRA QRB /// 21 /
0 6 11 16 21 26 31

4 QRT QRA QRB /// 20 /
0 6 11 16 21 26 31

0 QRT QRA QRB /// 20 /
0 6 11 16 21 26 31

QPX Architecture

24

Quad-Vector Floating-point MULtiply
[Single] A-form

qvfmul QRT,QRA,QRC

qvfmuls QRT,QRA,QRC

For each vector element, the floating-point operand in
register QRA is multiplied by the floating-point operand
in register QRC.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR, and placed into register QRT.

Floating-point multiplication is based on exponent addi-
tion and multiplication of the significands.

Special Registers Altered:
None

Quad-Vector Floating-point Reciprocal
Estimate [Single] A-form

qvfre QRT,QRB

qvfres QRT,QRB

For each vector element, an estimate of the reciprocal
of the floating-point operand in register QRB is placed
into register QRT. The estimate placed into register
QRT is correct to a precision of one part in 16384 of the
reciprocal of (QRB), i.e.,

where x is the initial value in QRB.

Operation with various special values of the operand is
summarized below.

The results of executing this instruction may vary
between implementations.

Special Registers Altered:
None

4 QRT QRA /// QRC 25 /
0 6 11 16 21 26 31

0 QRT QRA /// QRC 25 /
0 6 11 16 21 26 31

4 QRT /// QRB /// 24 /
0 6 11 16 21 26 31

0 QRT /// QRB /// 24 /
0 6 11 16 21 26 31

Operand Result
-∞ -0
-0 -∞
+0 +∞
+∞ +0
SNaN QNaN
QNaN QNaN

ABS
estimate 1 x⁄–

1 x⁄
---------------------------------------()

1

16384
---------------≤

 QPX Architecture

25

Quad-Vector Floating-point Reciprocal
SQuare RooT Estimate [Single] A-form

qvfrsqrte QRT,QRB

qvfrsqrtes QRT,QRB

For each vector element, an estimate of the reciprocal
of the square root of the floating-point operand in regis-
ter QRB is placed into register QRT. The estimate
placed into register QRT is correct to a precision of one
part in 16384 of the reciprocal of the square root of
(QRB), i.e.,

where x is the initial value in QRB.

Operation with various special values of the operand is
summarized below.

The results of executing this instruction may vary
between implementations.

Special Registers Altered:
None

4 QRT /// QRB /// 26 /
0 6 11 16 21 26 31

0 QRT /// QRB /// 26 /
0 6 11 16 21 26 31

Operand Result
-∞ QNaN
< 0 QNaN
-0 -∞
+0 +∞
+∞ +0
SNaN QNaN
QNaN QNaN

ABS
estimate 1 x()⁄–

1 x()⁄
--()

1

16384
---------------≤

QPX Architecture

26

4.4.2 Quad-Vector Floating-Point Multiply-Add Instructions

Quad-Vector Floating-point Multiply-ADD
[Single] A-form

qvfmadd QRT,QRA,QRC,QRB

qvfmadds QRT,QRA,QRC,QRB

The operations
QRT0 ← [(QRA0)×(QRC0)] + (QRB0)
QRT1 ← [(QRA1)×(QRC1)] + (QRB1)
QRT2 ← [(QRA2)×(QRC2)] + (QRB2)
QRT3 ← [(QRA3)×(QRC3)] + (QRB3)

are performed.

For each vector element, the floating-point operand in
register QRA is multiplied by the floating-point operand
in register QRC. The floating-point operand in register
QRB is added to this intermediate result.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR, and placed into register QRT.

Special Registers Altered:
None

Quad-Vector Floating-point
Multiply-SUBtract [Single] A-form

qvfmsub QRT,QRA,QRC,QRB

qvfmsubs QRT,QRA,QRC,QRB

The operations
QRT0 ← [(QRA0)×(QRC0)] - (QRB0)
QRT1 ← [(QRA1)×(QRC1)] - (QRB1)
QRT2 ← [(QRA2)×(QRC2)] - (QRB2)
QRT3 ← [(QRA3)×(QRC3)] - (QRB3)

are performed.

For each vector element, the floating-point operand in
register QRA is multiplied by the floating-point operand
in register QRC. The floating-point operand in register
QRB is subtracted from this intermediate result.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR, and placed into register QRT.

Special Registers Altered:
None

4 QRT QRA QRB QRC 29 /
0 6 11 16 21 26 31

0 QRT QRA QRB QRC 29 /
0 6 11 16 21 26 31

4 QRT QRA QRB QRC 28 /
0 6 11 16 21 26 31

0 QRT QRA QRB QRC 28 /
0 6 11 16 21 26 31

 QPX Architecture

27

Quad-Vector Floating-point Negative
Multiply-ADD [Single] A-form

qvfnmadd QRT,QRA,QRC,QRB

qvfnmadds QRT,QRA,QRC,QRB

The operations
QRT0 ← - ([(QRA0)×(QRC0)] + (QRB0))
QRT1 ← - ([(QRA1)×(QRC1)] + (QRB1))
QRT2 ← - ([(QRA2)×(QRC2)] + (QRB2))
QRT3 ← - ([(QRA3)×(QRC3)] + (QRB3))

are performed.

For each vector element, the floating-point operand in
register QRA is multiplied by the floating-point operand
in register QRC. The floating-point operand in register
QRB is added to this intermediate result.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR, then negated and placed into
register QRT.

This instruction produces the same result as would be
obtained by using the qvfmadd instruction and then
negating the result, with the following exceptions.

n QNaNs propagate with no effect on their “sign” bit.
n QNaNs that are generated as the result of a dis-

abled Invalid Operation Exception have a “sign” bit
of 0.

n SNaNs that are converted to QNaNs as the result
of a disabled Invalid Operation Exception retain the
“sign” bit of the SNaN.

Special Registers Altered:
None

Quad-Vector Floating-point Negative
Multiply-SUBtract [Single] A-form

qvfnmsub QRT,QRA,QRC,QRB

qvfnmsubs QRT,QRA,QRC,QRB

The operations
QRT0 ← - ([(QRA0)×(QRC0)] - (QRB0))
QRT1 ← - ([(QRA1)×(QRC1)] - (QRB1))
QRT2 ← - ([(QRA2)×(QRC2)] - (QRB2))
QRT3 ← - ([(QRA3)×(QRC3)] - (QRB3))

are performed.

For each vector element, the floating-point operand in
register QRA is multiplied by the floating-point operand
in register QRC. The floating-point operand in register
QRB is subtracted from this intermediate result.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR, then negated and placed into
register QRT.

This instruction produces the same result as would be
obtained by using the qvfmsub instruction and then
negating the result, with the following exceptions.

n QNaNs propagate with no effect on their “sign” bit.
n QNaNs that are generated as the result of a dis-

abled Invalid Operation Exception have a “sign” bit
of 0.

n SNaNs that are converted to QNaNs as the result
of a disabled Invalid Operation Exception retain the
“sign” bit of the SNaN.

Special Registers Altered:
None

4 QRT QRA QRB QRC 31 /
0 6 11 16 21 26 31

0 QRT QRA QRB QRC 31 /
0 6 11 16 21 26 31

4 QRT QRA QRB QRC 30 /
0 6 11 16 21 26 31

0 QRT QRA QRB QRC 30 /
0 6 11 16 21 26 31

QPX Architecture

28

Quad-Vector Floating-point cross (X)
Multiply-ADD [Single] A-form

qvfxmadd QRT,QRA,QRC,QRB

qvfxmadds QRT,QRA,QRC,QRB

The operations
QRT0 ← [(QRA0)×(QRC0)] + (QRB0)
QRT1 ← [(QRA0)×(QRC1)] + (QRB1)
QRT2 ← [(QRA2)×(QRC2)] + (QRB2)
QRT3 ← [(QRA2)×(QRC3)] + (QRB3)

are performed.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR, and placed into register QRT.

Special Registers Altered:
None

Quad-Vector Floating-point double-cross
complex (XXNP) Multiply-ADD [Single]
A-form

qvfxxnpmadd QRT,QRA,QRC,QRB

qvfxxnpmadds QRT,QRA,QRC,QRB

The operations
QRT0 ← - ([(QRA1)×(QRC1)] - (QRB0))
QRT1 ← [(QRA0)×(QRC1)] + (QRB1)
QRT2 ← - ([(QRA3)×(QRC3)] - (QRB2))
QRT3 ← [(QRA2)×(QRC3)] + (QRB3)

are performed.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR. For vector elements 0 and 2,
the rounded result is negated and placed into register
QRT. For vector elements 1 and 3, the rounded result is
placed into register QRT.

Special Registers Altered:
None

qvfxmul QPR22, QPR20, QPR21 (notice A=QPR20 and C=QPR21) yields:

qvfxxnpmadd QPR23, QPR21, QPR20, QPR22 (notice A=QPR21 and C=QPR20) yields:

Now need to add Element0+Element2 and Element1+Element3

4 QRT QRA QRB QRC 9 /
0 6 11 16 21 26 31

0 QRT QRA QRB QRC 9 /
0 6 11 16 21 26 31

This instruction is typically used in cross-product
multiplication, and in conjunction with qvfxxnp-
madd.

Programming Note

4 QRT QRA QRB QRC 11 /
0 6 11 16 21 26 31

0 QRT QRA QRB QRC 11 /
0 6 11 16 21 26 31

This instruction is typically used in cross-product
multiplication of complex numbers, in conjunction
with qvfxmul or qvfxmadd.
M0+N0i M1+N1i P0+Q0i P2+Q2i

M2+N2i M3+N3i P1+Q1i P3+Q3i

Consecutive Memory Locations: M0 N0 M1 N1 M2 N2 M3 N3

Separate from above, but consecutive in memory: P0 Q0 P1 Q1 P2 Q2 P3 Q3

A 2x2 matrix MN times a 2x2 matrix PQ produces a resultant 2x2 matrix R

Entry Row1Column1 of the Resultant Matrix R

= (M0+N0i)(P0+Q0i) + (M1+N1i)(P1+Q1i)

= M0P0+M0Q0i+N0P0i-N0Q0 + M1P1+M1Q1i+N1P1i-N1Q1

Element0 Element1 Element2 Element3

QPR20 M0 N0 M1 N1

Element0 Element1 Element2 Element3

QPR21 P0 Q0 P1 Q1

Element0 Element1 Element2 Element3

QPR22 M0P0 M0Q0 M1P1 M1Q1

Element0 Element1 Element2 Element3

QPR23 M0P0 - N0Q0 M0Q0 + N0P0 M1P1 - N1Q1 M1Q1 + N1P1

Programming Note

 QPX Architecture

29

Quad-Vector Floating-point double-cross
conjugate (XXCPN) Multiply-ADD [Single]
A-form

qvfxxcpnmadd QRT,QRA,QRC,QRB

qvfxxcpnmadds QRT,QRA,QRC,QRB

The operations
QRT0 ← [(QRA1)×(QRC1)] + (QRB0)
QRT1 ← - ([(QRA0)×(QRC1)] - (QRB1))
QRT2 ← [(QRA3)×(QRC3)] + (QRB2)
QRT3 ← - ([(QRA2)×(QRC3)] - (QRB3))

are performed.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR. For vector elements 0 and 2,
the rounded result is placed into register QRT. For vec-
tor elements 1 and 3, the rounded result is negated and
placed into register QRT.

Special Registers Altered:
None

Quad-Vector Floating-point double-cross
(XX) Multiply-ADD [Single] A-form

qvfxxmadd QRT,QRA,QRC,QRB

qvfxxmadds QRT,QRA,QRC,QRB

The operations
QRT0 ← [(QRA1)×(QRC1)] + (QRB0)
QRT1 ← [(QRA0)×(QRC1)] + (QRB1)
QRT2 ← [(QRA3)×(QRC3)] + (QRB2)
QRT3 ← [(QRA2)×(QRC3)] + (QRB3)

are performed.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR, and placed into register QRT.

Special Registers Altered:
None

4 QRT QRA QRB QRC 3 /
0 6 11 16 21 26 31

0 QRT QRA QRB QRC 3 /
0 6 11 16 21 26 31

4 QRT QRA QRB QRC 1 /
0 6 11 16 21 26 31

0 QRT QRA QRB QRC 1 /
0 6 11 16 21 26 31

QPX Architecture

30

Quad-Vector Floating-point cross (X)
MULtiply [Single] A-form

qvfxmul QRT,QRA,QRC

qvfxmuls QRT,QRA,QRC

The operations
QRT0 ← (QRA0) × (QRC0)
QRT1 ← (QRA0) × (QRC1)
QRT2 ← (QRA2) × (QRC2)
QRT3 ← (QRA2) × (QRC3)

are performed.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR, and placed into register QRT.

Special Registers Altered:
None

4 QRT QRA /// QRC 17 /
0 6 11 16 21 26 31

0 QRT QRA /// QRC 17 /
0 6 11 16 21 26 31

 QPX Architecture

31

4.5 Quad-Vector Floating-Point Rounding and Conversion Instruc-
tions

4.5.1 Quad-Vector Floating-Point Rounding Instruction

Quad-Vector Floating-point Round to
Single-Precision X-form

qvfrsp QRT,QRB

For each vector element, the floating-point operand in
register QRB is rounded to single-precision under con-
trol of the Floating-Point Rounding Control field (RN) of
the FPSCR, and placed into register QRT.

Special Registers Altered:
None

4 QRT /// QRB 12 /
0 6 11 16 21 31

QPX Architecture

32

4.5.2 Quad-Vector Floating-Point Convert To/From Integer Instructions

Quad-Vector Floating-point Convert To
Integer Doubleword X-form

qvfctid QRT,QRB

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR.

For each vector element, if the rounded floating-point
integer is greater than 263 - 1, then QRT is set to
0x7FFF_FFFF_FFFF_FFFF.

For each vector element, if the rounded floating-point
integer is less than -263, then QRT is set to
0x8000_0000_0000_0000.

Otherwise, for each vector element, QRT is set to the
value of the rounded floating-point integer converted to
64-bit signed-integer format.

Special Registers Altered:
None

Quad-Vector Floating-point Convert To
Integer Doubleword Unsigned X-form

qvfctidu QRT,QRB

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR.

For each vector element, if the rounded floating-point
integer is greater than 264 - 1, then QRT is set to
0xFFFF_FFFF_FFFF_FFFF.

For each vector element, if the rounded floating-point
integer is less than 0.0, then QRT is set to
0x0000_0000_0000_0000.

Otherwise, for each vector element, QRT is set to the
value of the rounded floating-point integer converted to
64-bit unsigned-integer format.

Special Registers Altered:
None

Quad-Vector Floating-point Convert To
Integer Doubleword with round toward
Zero X-form

qvfctidz QRT,QRB

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer
using the rounding mode Round toward Zero.

For each vector element, if the rounded floating-point
integer is greater than 263 - 1, then QRT is set to
0x7FFF_FFFF_FFFF_FFFF.

For each vector element, if the rounded floating-point
integer is less than -263, then QRT is set to
0x8000_0000_0000_0000.

Otherwise, for each vector element, QRT is set to the
value of the rounded floating-point integer converted to
64-bit signed-integer format.

Special Registers Altered:
None

Quad-Vector Floating-point Convert To
Integer Doubleword Unsigned with round
toward Zero X-form

qvfctiduz QRT,QRB

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer
using the rounding mode Round toward Zero.

For each vector element, if the rounded floating-point
integer is greater than 264 - 1, then QRT is set to
0xFFFF_FFFF_FFFF_FFFF.

For each vector element, if the rounded floating-point
integer is less than 0.0, then QRT is set to
0x0000_0000_0000_0000.

Otherwise, for each vector element, QRT is set to the
value of the rounded floating-point integer converted to
64-bit unsigned-integer format.

Special Registers Altered:
None

4 QRT /// QRB 814 /
0 6 11 16 21 31

4 QRT /// QRB 942 /
0 6 11 16 21 31

4 QRT /// QRB 815 /
0 6 11 16 21 31

4 QRT /// QRB 943 /
0 6 11 16 21 31

 QPX Architecture

33

Quad-Vector Floating-point Convert To
Integer Word X-form

qvfctiw QRT,QRB

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR.

For each vector element, if the rounded floating-point
integer is greater than 231 - 1, then QRT32:63 is set to
0x7FFF_FFFF.

For each vector element, if the rounded floating-point
integer is less than -231, then QRT32:63 is set to
0x8000_0000.

Otherwise, for each vector element, QRT32:63 is set to
the value of the rounded floating-point integer con-
verted to 32-bit signed-integer format.

QRT0:31 of each vector element is undefined.

Special Registers Altered:
None

Quad-Vector Floating-point Convert To
Integer Word Unsigned X-form

qvfctiwu QRT,QRB

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR.

For each vector element, if the rounded floating-point
integer is greater than 232 - 1, then QRT32:63 is set to
0xFFFF_FFFF.

For each vector element, if the rounded floating-point
integer is less than 0.0, then QRT32:63 is set to
0x0000_0000.

Otherwise, for each vector element, QRT32:63 is set to
the value of the rounded floating-point integer con-
verted to 32-bit unsigned-integer format.

QRT0:31 of each vector element is undefined.

Special Registers Altered:
None

4 QRT /// QRB 14 /
0 6 11 16 21 31

In the QPU of BGQ, for each vector element,
QRT0:31 ← 0x7FF80000

Implementation Note

4 QRT /// QRB 142 /
0 6 11 16 21 31

In the QPU of BGQ, for each vector element,
QRT0:31 ← 0x7FF80000

Implementation Note

QPX Architecture

34

Quad-Vector Floating-point Convert To
Integer Word with round toward Zero
X-form

qvfctiwz QRT,QRB

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer
using the rounding mode Round toward Zero.

For each vector element, if the rounded floating-point
integer is greater than 231 - 1, then QRT32:63 is set to
0x7FFF_FFFF.

For each vector element, if the rounded floating-point
integer is less than -231, then QRT32:63 is set to
0x8000_0000.

Otherwise, for each vector element, QRT32:63 is set to
the value of the rounded floating-point integer con-
verted to 32-bit signed-integer format.

QRT0:31 of each vector element is undefined.

Special Registers Altered:
None

Quad-Vector Floating-point Convert To
Integer Word Unsigned with round toward
Zero X-form

qvfctiwuz QRT,QRB

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer
using the rounding mode Round toward Zero.

For each vector element, if the rounded floating-point
integer is greater than 232 - 1, then QRT32:63 is set to
0xFFFF_FFFF.

For each vector element, if the rounded floating-point
integer is less than 0.0, then QRT32:63 is set to
0x0000_0000.

Otherwise, for each vector element, QRT32:63 is set to
the value of the rounded floating-point integer con-
verted to 32-bit unsigned-integer format.

QRT0:31 of each vector element is undefined.

Special Registers Altered:
None

4 QRT /// QRB 15 /
0 6 11 16 21 31

In the QPU of BGQ, for each vector element,
QRT0:31 ← 0x7FF80000

Implementation Note

4 QRT /// QRB 143 /
0 6 11 16 21 31

In the QPU of BGQ, for each vector element,
QRT0:31 ← 0x7FF80000

Implementation Note

 QPX Architecture

35

Quad-Vector Floating-point Convert From
Integer Doubleword X-form

qvfcfid QRT,QRB

For each vector element, the 64-bit signed fixed-point
operand in register QRB is converted to an infinitely
precise floating-point integer. The result of the conver-
sion is rounded to double-precision under control of the
Floating-Point Rounding Control field (RN) of the
FPSCR, and placed into register QRT.

Special Registers Altered:
None

Quad-Vector Floating-point Convert From
Integer Doubleword Unsigned X-form

qvfcfidu QRT,QRB

For each vector element, the 64-bit unsigned
fixed-point operand in register QRB is converted to an
infinitely precise floating-point integer. The result of the
conversion is rounded to double-precision under con-
trol of the Floating-Point Rounding Control field (RN) of
the FPSCR, and placed into register QRT.

Special Registers Altered:
None

Quad-Vector Floating-point Convert From
Integer Doubleword Single X-form

qvfcfids QRT,QRB

For each vector element, the 64-bit signed fixed-point
operand in register QRB is converted to an infinitely
precise floating-point integer. The result of the conver-
sion is rounded to single-precision under control of the
Floating-Point Rounding Control field (RN) of the
FPSCR, and placed into register QRT.

Special Registers Altered:
None

Quad-Vector Floating-point Convert From
Integer Doubleword Unsigned Single
X-form

qvfcfidus QRT,QRB

For each vector element, the 64-bit unsigned
fixed-point operand in register QRB is converted to an
infinitely precise floating-point integer. The result of the
conversion is rounded to single-precision under control
of the Floating-Point Rounding Control field (RN) of the
FPSCR, and placed into register QRT.

Special Registers Altered:
None

4 QRT /// QRB 846 /
0 6 11 16 21 31

4 QRT /// QRB 974 /
0 6 11 16 21 31

0 QRT /// QRB 846 /
0 6 11 16 21 31

0 QRT /// QRB 974 /
0 6 11 16 21 31

QPX Architecture

36

4.5.3 Quad-Vector Floating-Point Round to Integer Instructions

Quad-Vector Floating-point Round to
Integer Nearest X-form

qvfrin QRT,QRB

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer as
follows, with the result placed into register QRT. If the
sign of the operand is positive, (QRB) + 0.5 is truncated
to a floating-point integer, otherwise (QRB) - 0.5 is trun-
cated to a floating-point integer.

Special Registers Altered:
None

Quad-Vector Floating-point Round to
Integer Plus X-form

qvfrip QRT,QRB

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer
using the rounding mode Round toward +Infinity, and
the result is placed into register QRT.

Special Registers Altered:
None

Quad-Vector Floating-point Round to
Integer toward Zero X-form

qvfriz QRT,QRB

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer
using the rounding mode Round toward Zero, and the
result is placed into register QRT.

Special Registers Altered:
None

Quad-Vector Floating-point Round to
Integer Minus X-form

qvfrim QRT,QRB

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer
using the rounding mode Round toward -Infinity, and
the result is placed into register QRT.

Special Registers Altered:
None

4 QRT /// QRB 392 /
0 6 11 16 21 31

4 QRT /// QRB 456 /
0 6 11 16 21 31

4 QRT /// QRB 424 /
0 6 11 16 21 31

4 QRT /// QRB 488 /
0 6 11 16 21 31

 QPX Architecture

37

4.6 Quad-Vector Floating-Point Compare Instructions

Quad-Vector Floating-point TeST for NAN
X-form

qvftstnan QRT,QRA,QRB

if isNaN(QRA0) OR isNaN(QRB0)
then QRT0← 0x3FF0_0000_0000_0000
else QRT0← 0xBFF0_0000_0000_0000

if isNaN(QRA1) OR isNaN(QRB1)
then QRT1← 0x3FF0_0000_0000_0000
else QRT1← 0xBFF0_0000_0000_0000

if isNaN(QRA2) OR isNaN(QRB2)
then QRT2← 0x3FF0_0000_0000_0000
else QRT2← 0xBFF0_0000_0000_0000

if isNaN(QRA3) OR isNaN(QRB3)
then QRT3← 0x3FF0_0000_0000_0000
else QRT3← 0xBFF0_0000_0000_0000

Each vector element is compared for the specified con-
dition, and the result is encoded. The Boolean value
TRUE is encoded as 1.0. The Boolean value of FALSE
is encoded as -1.0.

Special Registers Altered:
None

Quad-Vector Floating-point CoMPare
Greater Than X-form

qvfcmpgt QRT,QRA,QRB

if (QRA0) > (QRB0)
then QRT0← 0x3FF0_0000_0000_0000
else QRT0← 0xBFF0_0000_0000_0000

if (QRA1) > (QRB1)
then QRT1← 0x3FF0_0000_0000_0000
else QRT1← 0xBFF0_0000_0000_0000

if (QRA2) > (QRB2)
then QRT2← 0x3FF0_0000_0000_0000
else QRT2← 0xBFF0_0000_0000_0000

if (QRA3) > (QRB3)
then QRT3← 0x3FF0_0000_0000_0000
else QRT3← 0xBFF0_0000_0000_0000

Each vector element is compared for the specified con-
dition, and the result is encoded. The Boolean value
TRUE is encoded as 1.0. The Boolean value of FALSE
is encoded as -1.0.

When one of the operands is a NaN, the value -1.0
(FALSE) is returned.

Special Registers Altered:
None

4 QRT QRA QRB 64 /
0 6 11 16 21 31

4 QRT QRA QRB 32 /
0 6 11 16 21 31

QPX Architecture

38

Quad-Vector Floating-point CoMPare
Less Than X-form

qvfcmplt QRT,QRA,QRB

if (QRA0) < (QRB0)
then QRT0 ← 0x3FF0_0000_0000_0000
else QRT0 ← 0xBFF0_0000_0000_0000

if (QRA1) < (QRB1)
then QRT1 ← 0x3FF0_0000_0000_0000
else QRT1 ← 0xBFF0_0000_0000_0000

if (QRA2) < (QRB2)
then QRT2 ← 0x3FF0_0000_0000_0000
else QRT2 ← 0xBFF0_0000_0000_0000

if (QRA3) < (QRB3)
then QRT3 ← 0x3FF0_0000_0000_0000
else QRT3 ← 0xBFF0_0000_0000_0000

Each vector element is compared for the specified con-
dition, and the result is encoded. The Boolean value
TRUE is encoded as 1.0. The Boolean value of FALSE
is encoded as -1.0.

When one of the operands is a NaN, the value -1.0
(FALSE) is returned.

Special Registers Altered:
None

Quad-Vector Floating-point CoMPare
EQual X-form

qvfcmpeq QRT,QRA,QRB

if (QRA0) = (QRB0)
then QRT0 ← 0x3FF0_0000_0000_0000
else QRT0 ← 0xBFF0_0000_0000_0000

if (QRA1) = (QRB1)
then QRT1 ← 0x3FF0_0000_0000_0000
else QRT1 ← 0xBFF0_0000_0000_0000

if (QRA2) = (QRB2)
then QRT2 ← 0x3FF0_0000_0000_0000
else QRT2 ← 0xBFF0_0000_0000_0000

if (QRA3) = (QRB3)
then QRT3 ← 0x3FF0_0000_0000_0000
else QRT3 ← 0xBFF0_0000_0000_0000

Each vector element is compared for the specified con-
dition, and the result is encoded. The Boolean value
TRUE is encoded as 1.0. The Boolean value of FALSE
is encoded as -1.0.

When one of the operands is a NaN, the value -1.0
(FALSE) is returned.

Special Registers Altered:
None

4 QRT QRA QRB 96 /
0 6 11 16 21 31

4 QRT QRA QRB 0 /
0 6 11 16 21 31

 QPX Architecture

39

4.7 Quad Floating-Point Select Instruction

Quad-Vector Floating-point SELectA-form

qvfsel QRT,QRA,QRC,QRB

if (QRA0) ≥ 0.0
then QRT0 ← (QRC0)
else QRT0 ← (QRB0)

if (QRA1) ≥ 0.0
then QRT1 ← (QRC1)
else QRT1 ← (QRB1)

if (QRA2) ≥ 0.0
then QRT2 ← (QRC2)
else QRT2 ← (QRB2)

if (QRA3) ≥ 0.0
then QRT3 ← (QRC3)
else QRT3 ← (QRB3)

For each vector element, the floating-point operand in
register QRA is compared to the value zero. If the
operand is greater than or equal to zero, register QRT
is set to the contents of register QRC. If the operand is
less than zero or is a NaN, register QRT is set to the
contents of register QRB. The comparison ignores the
sign of zero (i.e., regards +0 as equal to -0).

Special Registers Altered:
None

4 QRT QRA QRB QRC 23 /
0 6 11 16 21 26 31

QPX Architecture

40

4.8 Quad-Vector Alignment and Formatting Instructions

Quad-Vector ALIGN Immediate
 Z23-form

qvaligni QRT,QRA,QRB,VD

if VD = 00 then
QRT ← (QRA)

else if VD = 01 then
QRT ← (QRA1) || (QRA2) || (QRA3) || (QRB0)

else if VD = 10 then
QRT ← (QRA2) || (QRA3) || (QRB0) || (QRB1)

else if VD = 11 then
QRT ← (QRA3) || (QRB0) || (QRB1) || (QRB2)

The contents of registers QRA and QRB are concate-
nated, and a quad-vector is extracted starting at the
vector element specified by field VD. The resulting
quad-vector is placed into register QRT.

Special Registers Altered:
None

Quad-Vector Floating-point PERMute
A-form

qvfperm QRT,QRA,QRB,QRC

For each vector element,
if QRC1:11 = 0x400 then

case QRC12:14
QRT ← (QRA0) when 000
QRT ← (QRA1) when 001
QRT ← (QRA2) when 010
QRT ← (QRA3) when 011
QRT ← (QRB0) when 100
QRT ← (QRB1) when 101
QRT ← (QRB2) when 110
QRT ← (QRB3) when 111

else
QRT ← Undefined

The contents of registers QRA and QRB are concate-
nated. A quad-vector is composed from vector ele-
ments extracted from the concatenated registers, as
specified by the contents of register QRC.

Special Registers Altered:
None

4 QRT QRA QRB VD 5 /
0 6 11 16 21 23 31

4 QRT QRA QRB QRC 6 /
0 6 11 16 21 26 31

 QPX Architecture

41

Quad-Vector Element SPLAT Immediate
Z23-form

qvesplati QRT,QRA,VD

if VD = 00 then
QRT ← (QRA0) || (QRA0) || (QRA0) || (QRA0)

else if VD = 01 then
QRT ← (QRA1) || (QRA1) || (QRA1) || (QRA1)

else if VD = 10 then
QRT ← (QRA2) || (QRA2) || (QRA2) || (QRA2)

else if VD = 11 then
QRT ← (QRA3) || (QRA3) || (QRA3) || (QRA3)

The vector element from register QRA, specified by
field VD, is placed into each vector element of register
QRT.

Special Registers Altered:
None

Quad-Vector Generate Permute Control
Immediate Z23-form

qvgpci QRT,GPC

QRT0 ← 0x400 || GPC0: 2 ||
490

QRT1 ← 0x400 || GPC3: 5 ||
490

QRT2 ← 0x400 || GPC6: 8 ||
490

QRT3 ← 0x400 || GPC9:11 ||
490

Register QRT is loaded with the 12-bit immediate field
GPC, dispersed across its four elements, to serve as
control for a QVFPERM instruction.

Special Registers Altered:
None

4 QRT QRA // VD 37 /
0 6 11 16 21 23 31

4 QRT GPC 133 /
0 6 11 23 31

QPX Architecture

42

4.9 Floating-Point Boolean Instruction

Quad-Vector Floating-point boolean
LOGICAL X-form

qvflogical QRT,QRA,QRB,TT

For each vector element,
if [(QRA) < 0.0 OR isNaN(QRA)] AND
 [(QRB) < 0.0 OR isNan(QRB)] then

if TT0 = 1 then QRT ← 0x3FF0_0000_0000_0000
else QRT ← 0xBFF0_0000_0000_0000

if [(QRA) ≥ 0.0] AND
 [(QRB) < 0.0 OR isNaN(QRB)] then

if TT1 = 1 then QRT ← 0x3FF0_0000_0000_0000
else QRT ← 0xBFF0_0000_0000_0000

if [(QRA) < 0.0 OR isNaN(QRA)] AND
 [(QRB) ≥ 0.0] then

if TT2 = 1 then QRT ← 0x3FF0_0000_0000_0000
else QRT ← 0xBFF0_0000_0000_0000

if [(QRA) ≥ 0.0] AND
 [(QRB) ≥ 0.0] then

if TT3 = 1 then QRT ← 0x3FF0_0000_0000_0000
else QRT ← 0xBFF0_0000_0000_0000

The floating-point operands in registers QRA and QRB
are treated as boolean values of TRUE if greater than
or equal to +/- 0.0, and as FALSE if less than 0.0 or a
NaN. Immediate field TT is used in conjunction with
these values to create a logical operation.

4 QRT QRA QRB TT 4 /
0 6 11 16 21 25 31

Some common logical operations can be accessed
via pseudo mnemonics, expressed in the table
below.

Extended Mnemonic Equivalent Function

qvfclr QRT qvflogical QRT,QRT,QRT,0 clear (set as FALSE)

qvfand QRT,QRA,QRB qvflogical QRT,QRA,QRB,1 and

qvfandc QRT,QRA,QRB qvflogical QRT,QRA,QRB,4 and complement B

qvfctfb QRT,QRA qvflogical QRT,QRA,QRA,5 convert to float-boolean A

qvfxor QRT,QRA,QRB qvflogical QRT,QRA,QRB,6 xor

qvfor QRT,QRA,QRB qvflogical QRT,QRA,QRB,7 or

qvfnor QRT,QRA,QRB qvflogical QRT,QRA,QRB,8 nor

qvfequ QRT,QRA,QRB qvflogical QRT,QRA,QRB,9 Boolean equivalent (XNOR)

qvfnot QRT,QRA qvflogical QRT,QRA,QRA,10 not

qvforc QRT,QRA,QRB qvflogical QRT,QRA,QRB,13 or complement B

qvfnand QRT,QRA,QRB qvflogical QRT,QRA,QRB,14 nand

qvfset QRT qvflogical QRT,QRT,QRT,15 set (set as TRUE)

Programming Note

	Chapter 1. Quad-Vector Floating-Point Facility Overview
	1.1 Notation

	Chapter 2. Quad-Vector Floating-Point Facility Registers
	2.1 Quad-Vector Floating-Point Registers
	2.2 Floating-Point Status and Control Register
	2.3 Store Exception Enable Registers

	Chapter 3. Scalar Instructions
	Chapter 4. Quad-Vector Floating-Point Facility Instructions
	4.1 Quad-Vector Floating-Point Load Instructions
	Quad-Vector Load Floating-point Single indeXed X-form
	Quad-Vector Load Floating-point Single with Update indeXed X-form
	Quad-Vector Load Floating-point Double indeXed X-form
	Quad-Vector Load Floating-point Double with Update indeXed X-form
	Quad-Vector Load Floating-point Complex Single indeXed X-form
	Quad-Vector Load Floating-point Complex Double indeXed X-form
	Quad-Vector Load Floating-point Complex Single with Update indeXed X-form
	Quad-Vector Load Floating-point Complex Double with Update indeXed X-form
	Quad-Vector Load Floating-point as Integer Word Algebraic indeXed X-form
	Quad-Vector Load Floating-point as Integer Word and Zero indeXed X-form
	Quad-Vector Load Permute Control Left Double indeXed X-form
	Quad-Vector Load Permute Control Left Single indeXed X-form
	Quad-Vector Load Permute Control Right Double indeXed X-form
	Quad-Vector Load Permute Control Right Single indeXed X-form

	4.2 Quad-Vector Floating-Point Store Instructions
	Quad-Vector STore Floating-point Single indeXed X-form
	Quad-Vector STore Floating-point Single with Update indeXed X-form
	Quad-Vector STore Floating-point Single indeXed and Indicate X-form
	Quad-Vector STore Floating-point Single with Update indeXed and Indicate X-form
	Quad-Vector STore Floating-point Double indeXed X-form
	Quad-Vector STore Floating-point Double with Update indeXed X-form
	Quad-Vector STore Floating-point Double indeXed and Indicate X-form
	Quad-Vector STore Floating-point Double with Update indeXed and Indicate X-form
	Quad-Vector STore Floating-point Complex Single indeXed X-form
	Quad-Vector STore Floating-point Complex Double indeXed X-form
	Quad-Vector STore Floating-point Complex Single indeXed and Indicate X-form
	Quad-Vector STore Floating-point Complex Double indeXed and Indicate X-form
	Quad-Vector STore Floating-point Complex Single with Update indeXed X-form
	Quad-Vector STore Floating-point Complex Double with Update indeXed X-form
	Quad-Vector STore Floating-point Complex Single with Update indeXed and Indicate X-form
	Quad-Vector STore Floating-point Complex Double with Update indeXed and Indicate X-form
	Quad-Vector STore Floating-point as Integer Word indeXed X-form

	4.3 Quad-Vector Floating-Point Move Instructions
	Quad-Vector Floating-point Move Register X-form
	Quad-Vector Floating-point NEGate X-form
	Quad-Vector Floating-point ABSolute value X-form
	Quad-Vector Floating-point Negative ABSolute value X-form
	Quad-Vector Floating-point CoPy SiGN X-form

	4.4 Quad-Vector Floating-Point Arithmetic Instructions
	4.4.1 Quad-Vector Floating-Point Elementary Arithmetic Instructions
	Quad-Vector Floating-point ADD [Single] A-form
	Quad-Vector Floating-point SUBtract [Single] A-form
	Quad-Vector Floating-point MULtiply [Single] A-form
	Quad-Vector Floating-point Reciprocal Estimate [Single] A-form
	Quad-Vector Floating-point Reciprocal SQuare RooT Estimate [Single] A-form

	4.4.2 Quad-Vector Floating-Point Multiply-Add Instructions
	Quad-Vector Floating-point Multiply-ADD [Single] A-form
	Quad-Vector Floating-point Multiply-SUBtract [Single] A-form
	Quad-Vector Floating-point Negative Multiply-ADD [Single] A-form
	Quad-Vector Floating-point Negative Multiply-SUBtract [Single] A-form
	Quad-Vector Floating-point cross (X) Multiply-ADD [Single] A-form
	Quad-Vector Floating-point double-cross complex (XXNP) Multiply-ADD [Single] A-form
	Quad-Vector Floating-point double-cross conjugate (XXCPN) Multiply-ADD [Single] A-form
	Quad-Vector Floating-point double-cross (XX) Multiply-ADD [Single] A-form
	Quad-Vector Floating-point cross (X) MULtiply [Single] A-form

	4.5 Quad-Vector Floating-Point Rounding and Conversion Instruc tions
	4.5.1 Quad-Vector Floating-Point Rounding Instruction
	Quad-Vector Floating-point Round to Single-Precision X-form

	4.5.2 Quad-Vector Floating-Point Convert To/From Integer Instructions
	Quad-Vector Floating-point Convert To Integer Doubleword X-form
	Quad-Vector Floating-point Convert To Integer Doubleword Unsigned X-form
	Quad-Vector Floating-point Convert To Integer Doubleword with round toward Zero X-form
	Quad-Vector Floating-point Convert To Integer Doubleword Unsigned with round toward Zero X-form
	Quad-Vector Floating-point Convert To Integer Word X-form
	Quad-Vector Floating-point Convert To Integer Word Unsigned X-form
	Quad-Vector Floating-point Convert To Integer Word with round toward Zero X-form
	Quad-Vector Floating-point Convert To Integer Word Unsigned with round toward Zero X-form
	Quad-Vector Floating-point Convert From Integer Doubleword X-form
	Quad-Vector Floating-point Convert From Integer Doubleword Unsigned X-form
	Quad-Vector Floating-point Convert From Integer Doubleword Single X-form
	Quad-Vector Floating-point Convert From Integer Doubleword Unsigned Single X-form

	4.5.3 Quad-Vector Floating-Point Round to Integer Instructions
	Quad-Vector Floating-point Round to Integer Nearest X-form
	Quad-Vector Floating-point Round to Integer Plus X-form
	Quad-Vector Floating-point Round to Integer toward Zero X-form
	Quad-Vector Floating-point Round to Integer Minus X-form

	4.6 Quad-Vector Floating-Point Compare Instructions
	Quad-Vector Floating-point TeST for NAN X-form
	Quad-Vector Floating-point CoMPare Greater Than X-form
	Quad-Vector Floating-point CoMPare Less Than X-form
	Quad-Vector Floating-point CoMPare EQual X-form

	4.7 Quad Floating-Point Select Instruction
	Quad-Vector Floating-point SELect A-form

	4.8 Quad-Vector Alignment and Formatting Instructions
	Quad-Vector ALIGN Immediate Z23-form
	Quad-Vector Floating-point PERMute A-form
	Quad-Vector Element SPLAT Immediate Z23-form
	Quad-Vector Generate Permute Control Immediate Z23-form

	4.9 Floating-Point Boolean Instruction
	Quad-Vector Floating-point boolean LOGICAL X-form

